Determining the maximal singularity-free circle or sphere of parallel mechanisms using interval analysis
نویسندگان
چکیده
This paper proposes a systematic algorithm based on the interval analysis concept in order to obtain the maximal singularity-free circle or sphere within the workspace of parallel mechanisms. As case studies the 3-RPR planar and 6-UPS parallel mechanisms are considered to illustrate the relevance of the algorithm for 2D and 3D workspaces. To this end, the main algorithm is divided into four sub-algorithms, which eases the understanding of the main approach and leads to a more effective and robust algorithm to solve the problem. The first step is introduced to obtain the constant-orientation workspace and then the singularity locus. The main purpose is to obtain the maximal singularity-free workspace for an initial guess. Eventually, the general maximal singularity-free workspace is obtained. The main contribution of the paper is the proposition of a systematic algorithm to obtain the maximal singularity-free circle/sphere in the workspace of parallel mechanisms. The combination of the maximal singularity-free circle or sphere with the workspace analysis by taking into account the stroke of the actuators, as additional constraint to the latter problem, is considered. Moreover, the center point of the circle/sphere is not restrained to a prescribed point.
منابع مشابه
Design and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator
This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...
متن کاملOptimization of the Kinematic Sensitivity and the Greatest Continuous Circle in the Constant-orientation Workspace of Planar Parallel Mechanisms
This paper presents the results of a comprehensive study on the efficiency of planar parallel mechanisms, considering their kinetostatic performance and also, their workspace. This aim is approached upon proceeding single- and multi-objective optimization procedures. Kinetostatic performances of ten different planar parallel mechanisms are analyzed by resorting to a recent index, kinematic sens...
متن کاملRational Parametrization of Linear Pentapod's Singularity Variety and the Distance to it
A linear pentapod is a parallel manipulator with five collinear anchor points on the motion platform (end-effector), which are connected via SPS legs to the base. This manipulator has five controllable degrees-of-freedom and the remaining one is a free rotation around the motion platform axis (which in fact is an axial spindle). In this paper we present a rational parametrization of the singula...
متن کاملCOORDINATE INFLUENCE ON SINGULARITY OF A 3-UPS PARALLEL MANIPULATOR
This paper shows the coordinates influence on singularity of a three degree-of-freedom structure, namely, three-Universal-Prismatic-Spherical (3-UPS) parallel manipulator. Rotational coordinates, which are chosen to define the orientation of the platform, affect the singularity of the manipulator. Euler parameters, which don't have any inherent geometrical singularity are utilized, however they...
متن کاملJoint space and workspace analysis of a two-DOF closed-chain manipulator
The aim of this paper is to compute of the generalized aspects, i.e. the maximal singularity-free domains in the Cartesian product of the joint space and workspace, for a planar parallel mechanism in using quadtree model and interval analysis based method. The parallel mechanisms can admit several solutions to the inverses and the direct kinematic models. These singular configurations divide th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotica
دوره 34 شماره
صفحات -
تاریخ انتشار 2016